下面，我们将主要讨论自然空气冷却（自然对流），强制空气冷却以及仅含一种冷却介质的水冷系统。其它更为复杂的冷却方式，象热管或蒸发冷却，一般来说需要针对具体的应用做特别的设计。另外，在功率模块中油冷也几乎很少被用到。

在材料费用和加工费用允许的情况下，散热器材料应该具有尽可能好的导热系数 λ 。因此，金属铝（纯铝 $\lambda=247 \mathrm{~W} / \mathrm{K} * \mathrm{~m}$ ）通常是优先被采用的材料。在要求特别高的场合有时也可以采用铜（ $\lambda=398 \mathrm{~W} / \mathrm{K} * \mathrm{~m}$ ）。

值得注意的是导热系数与制造工艺以及所采用的合金有很大的关系。在实际应用中，多数散热器的导热系数入大致在 $150 \mathrm{~W} / \mathrm{K} * \mathrm{~m}$（铸造铝合金）和 $220 \mathrm{~W} / \mathrm{K} * \mathrm{~m}$（ AlMgSi 挤压成型）之间。

热量的扩散对散热器的散热效率有着可观的影响。因此，对散热器根部厚度的优化，翼片的数目，翼片的高度以及翼片的厚度之间比例的合适选取显得相当重要：

1．散热器的根部是用于安装功率模块的，不含分岔的平面区域。该处与模块底板之间的温度梯度相对较小，有着明显的热扩散作用。
2．对于空冷散热器来说，其大部分热量是通过翼片以辐射和传导的方式传递到周边环境的。而对于水冷散热器来说，这一作用是或多或少地由具有特定结构的水通道来实现的。
由 $\mathrm{R}_{\text {thha }}=\Delta \mathrm{T} / \mathrm{P}_{\text {tot }}=1 /(\alpha * \mathrm{~A})$
可得到 $\mathrm{Q}=\alpha * \mathrm{~A} * \Delta \mathrm{~T}=\mathrm{P}_{\mathrm{tot}}$
（以上 Q 为散发的热量，α 为传导系数， A 为传热面积，$\Delta \mathrm{T}$ 为与环境温度之间的温度差， $\mathrm{P}_{\mathrm{tot}}$ 为需要带走的损耗， $\mathrm{R}_{\mathrm{thha}}$ 为散热器的热阻）。

如果采用较多的翼片，便可以增大传热面积，但前提是能够保证流体的顺畅流动，否则 α 会超比例下降。

从这一结论出发，自然冷却和强制冷却的优化条件便有所不同。
当功耗增加时，散热器温度增高，受热也就更加均匀。也就是说，有效热交换的面积在增加。在图3．16中还可以看到，增加散热器的长度也可以增加热交换的面积。

3．3．2 冷却装置的传热模型

在 1．4．2．2节中介绍功率模块的热性能时，等效热路中的散热器是由一个 RC 元件来描述的（ $\mathrm{R}_{\text {thha }}, ~ \mathrm{Z}_{\text {thha }}$ ）。

然而，当功耗在 $t=0$ 时刻从 $P=0$ 跳跃到 $P=P_{m}$ 时，散热器的动态热抗 $Z_{\text {thha }}$ 随时间 t 而变化的特性曲线显示出其具有多个时间常数，如图3．16举例所示。系统总热抗的特性曲线 $\mathrm{Z}_{\mathrm{thja}}(\mathrm{t})$ 可以通过将功率模块的热抗与模块一散热器的热抗相迭加而得到。

根据下列公式，热抗曲线可以表达为一系列指数函数之和：

$$
\Delta \mathrm{T}(\mathrm{t})=\mathrm{P}_{\mathrm{m}} \cdot \sum_{v} \mathrm{R}_{\mathrm{thv}}\left[1-\exp \left(-\mathrm{t} / \tau_{\mathrm{thv}}\right)\right]
$$

和
$\mathrm{Z}_{\text {thha }}(\mathrm{t})=\Delta \mathrm{T}(\mathrm{t}) / \mathrm{P}_{\mathrm{m}}$
即 $\mathrm{Z}_{\text {thha }}(\mathrm{t})=\sum \mathrm{R}_{\mathrm{thv}}\left[1-\exp \left(-\mathrm{t} / \tau_{\mathrm{th} \nu}\right)\right]$
元件的数目 v 及 $\mathrm{R}_{\mathrm{th} v}$ 与 τ_{v} 数值的选取与具体的物理结构无关。在计算工作量允许的前提下，它们应该尽可能地逼近曲线的走势。在［266］中介绍了一个迭代方法。

为了方便用户进行仿真计算，SEMIKRON 的技术手册给出了具有四个时间常数的热路模型 $(v=4)$ 。在下面的章节中，它们还将会被提到。

3．3．3 自然空冷（自然对流）

自然空冷多用于功耗低于 50W 的系统，以及不允许应用风扇或者器件的散热面积特别大的大功率系统。

一般来说，在自由对流时散热器的热阻往往大于功率模块的内部热阻。所以，芯片 $\left(125^{\circ} \mathrm{C}\right)$ 与冷却空气 $\left(45^{\circ} \mathrm{C}\right)$ 之间的温度差大部分降落在散热器上。在接近模块的散热器处，温度常常高于采用强制风冷时，例如，在 $90^{\circ} \mathrm{C}$ 到 $100^{\circ} \mathrm{C}$之间。由于功耗通常比较小，所以根部和翼片相对较薄，而且材料的传导系数对热性能的影响不是十分重要。翼片之间的距离应当足够地大，以便在空气的升力（温度差／密度）和空气的摩擦之间取得较好的折衷。将散热器黑化可以有效地改善热辐射性能。在安装面和环境空气之间的温差为 50 K 时，黑化后的散热器热阻约降低 15%［266］。值得注意的是，上述表面处理并不影响模块底板和散热器之间的传热界面。

3．3．4 强制风冷

与自然空冷相比较，强制风冷时散热器的热阻可降低到 $1 / 5$ 至 $1 / 15$ 。图 3.16 比较了两种冷却方式下的热抗曲线 $\mathrm{Z}_{\text {thha }}(\mathrm{t})$ 。图中采用的 SEMIKRON 散热器为不同长度的 P16 型，稳态值为 $\mathrm{R}_{\text {thha }}$ 。

