时刻 t_{2} 时的结温增量：
$\Delta \mathrm{T}_{\mathrm{j} 2}=\mathrm{P}_{1} \cdot \sum_{v=1}^{\mathrm{n}} \mathrm{R}_{\mathrm{th} \nu}\left[1-\exp \left(-\mathrm{t}_{2} / \tau_{\mathrm{th} \nu}\right)\right]+\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right) \cdot \sum_{\left.\substack{\mathrm{th} \nu=1 \\ \mathrm{n}} 1-\exp \left(-\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) / \tau_{\mathrm{th} \nu}\right)\right]}$
时刻 t_{m} 时的结温增量：
$\Delta \mathrm{T}_{\mathrm{j}}\left(\mathrm{t}_{\mathrm{m}}\right)=\sum_{\mu=1}^{\mathrm{m}}\left(\mathrm{P}_{\mu}-\mathrm{P}_{\mu-1}\right) \cdot \sum_{\nu=1}^{\mathrm{n}} \mathrm{R}_{\mathrm{th} \mathrm{\nu}}\left[1-\exp \left(-\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}_{\mu-1}\right) / \tau_{\mathrm{th} \mathrm{\nu}}\right)\right]$
以上公式中，采用恒定的壳温作为参考点。

3．2．2．3 脉冲调制时的结温

处于周期性脉冲功耗负载下的平均和最大结温，可由参数表中所给出的晶体管和二极管的用于周期性脉冲运行的 $\mathrm{Z}_{\mathrm{thjc}}$ 曲线来计算。

图3．11以 SKM100GB123D 为例，显示了模块中 IGBT和二极管的相应曲线和在脉冲运行条件下电流和结温的曲线。

a）IGBT 的动态热抗 b）二极管的动态热抗 c）电流和结温

平均结温 $T_{\text {javg }}$ 可以由静态热阻 $\mathrm{R}_{\mathrm{thjc}}$ 与平均总功耗 $\mathrm{P}_{\text {totavg }}$ 相乘而得到。平均总功耗又可通过对一个周期 T_{s} 内每一个脉冲的能耗进行平均而得到。

$$
\begin{aligned}
& \mathrm{P}_{\text {totavg }}=\mathrm{f}_{\mathrm{s}} *\left(\mathrm{E}_{\text {on }}+\mathrm{E}_{\text {off }}+\mathrm{E}_{\mathrm{fw}}\right) \\
& \mathrm{T}_{\text {javg }}=\mathrm{T}_{\mathrm{c}}+\mathrm{P}_{\text {totavg }} * \mathrm{R}_{\text {thje }}
\end{aligned}
$$

最大结温 $T_{\text {jmax }}$ 则可由脉冲运行时的热抗值 Z_{thj} 与最大功耗 $P_{\text {totmax }}$ 相乘而得到。最大功耗又可以通过对一个周期 T_{s} 内每一个脉冲的能耗就其开通时间 t 进行平均而得到：

$$
\begin{aligned}
& P_{\text {totmax }}=\left(E_{\text {on }}+E_{\text {off }}+E_{f \mathrm{fw}}\right) / \mathrm{t} \\
& T_{\text {jmax }}=T_{\mathrm{c}}+\mathrm{P}_{\text {totmax }} * Z_{\mathrm{thj} \mathrm{c}}
\end{aligned}
$$

以 IGBT 模块 SKM100GB123D 为例：

$$
\begin{aligned}
\text { 例一: } & \mathrm{f}_{\mathrm{s}}=10 \mathrm{kHz} ; \mathrm{T}_{\mathrm{s}}=100 \mu \mathrm{~s} ; \mathrm{D}_{\mathrm{T}}=0.2 ; \mathrm{t}=20 \mu \mathrm{~s} \\
& \mathrm{~T}_{\mathrm{c}}=80^{\circ} \mathrm{C} ; \mathrm{E}_{\mathrm{on}}+\mathrm{E}_{\text {off }}+\mathrm{E}_{\mathrm{fw}}=25 \mathrm{~mJ} \\
& \mathrm{R}_{\mathrm{thjc}}=0.2^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{Z}_{\mathrm{thj}}=0.04^{\circ} \mathrm{C} / \mathrm{W} \text { (见图 } 3.11 \mathrm{a} \text {) }
\end{aligned}
$$

结果： $\mathrm{P}_{\text {totavg }}=250 \mathrm{~W} ; \mathrm{P}_{\text {totmax }}=1250 \mathrm{~W}$
$\mathrm{T}_{\text {javg }}=80^{\circ} \mathrm{C}+250 \mathrm{~W} * 0.2^{\circ} \mathrm{C} / \mathrm{W}=\mathbf{1 3 0}^{\circ} \mathbf{C}$
$\mathrm{T}_{\text {jmax }}=80^{\circ} \mathrm{C}+1250 \mathrm{~W} * 0.04^{\circ} \mathrm{C} / \mathrm{W}=\mathbf{1 3 0}^{\circ} \mathbf{C}$
例二： $\mathrm{f}_{\mathrm{s}}=2 \mathrm{kHz} ; \mathrm{T}_{\mathrm{s}}=500 \mu \mathrm{~s} ; \mathrm{D}_{\mathrm{T}}=0.2 ; \mathrm{t}=100 \mu \mathrm{~s}$
$\mathrm{T}_{\mathrm{c}}=80^{\circ} \mathrm{C} ; \mathrm{E}_{\mathrm{on}}+\mathrm{E}_{\text {off }}+\mathrm{E}_{\mathrm{fw}}=25 \mathrm{~mJ}$
$\mathrm{R}_{\mathrm{thjc}}=0.2^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{Z}_{\mathrm{thjc}}=0.042^{\circ} \mathrm{C} / \mathrm{W}$（见图 3．11a）
结果： $\mathrm{P}_{\text {totavg }}=50 \mathrm{~W} ; \mathrm{P}_{\text {totmax }}=250 \mathrm{~W}$
$\mathrm{T}_{\text {javg }}=80^{\circ} \mathrm{C}+50 \mathrm{~W} * 0.2^{\circ} \mathrm{C} / \mathrm{W}=90^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {jmax }}=80^{\circ} \mathrm{C}+250 \mathrm{~W} * 0.042^{\circ} \mathrm{C} / \mathrm{W}=90.5^{\circ} \mathrm{C}$
例三： $\mathrm{f}_{\mathrm{s}}=2 \mathrm{kHz} ; \mathrm{T}_{\mathrm{s}}=500 \mu \mathrm{~s} ; \mathrm{D}_{\mathrm{T}}=0.2 ; \mathrm{t}=100 \mu \mathrm{~s}$
$\mathrm{T}_{\mathrm{c}}=80^{\circ} \mathrm{C} ; \mathrm{E}_{\text {on }}+\mathrm{E}_{\text {off }}+\mathrm{E}_{\mathrm{fw}}=125 \mathrm{~mJ}$
$\mathrm{R}_{\mathrm{thjc}}=0.2^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{Z}_{\mathrm{thjc}}=0.042^{\circ} \mathrm{C} / \mathrm{W}$（见图 3．11a）
结果： $\mathrm{P}_{\text {totavg }}=250 \mathrm{~W} ; \mathrm{P}_{\text {totmax }}=1250 \mathrm{~W}$
$\mathrm{T}_{\text {javg }}=80^{\circ} \mathrm{C}+250 \mathrm{~W} * 0.2^{\circ} \mathrm{C} / \mathrm{W}=\mathbf{1 3 0}^{\circ} \mathbf{C}$
$\mathrm{T}_{\text {jmax }}=80^{\circ} \mathrm{C}+1250 \mathrm{~W} * 0.042^{\circ} \mathrm{C} / \mathrm{W}=132.5^{\circ} \mathbf{C}$
例四： $\mathrm{f}_{\mathrm{s}}=50 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{s}}=20 \mathrm{~ms} ; \mathrm{D}_{\mathrm{T}}=0.5 ; \mathrm{t}=10 \mathrm{~ms}$
$\mathrm{T}_{\mathrm{c}}=80^{\circ} \mathrm{C} ; \mathrm{E}_{\text {on }}+\mathrm{E}_{\text {off }}+\mathrm{E}_{\mathrm{fw}}=5 \mathrm{~J}$
$\mathrm{R}_{\mathrm{tbjc}}=0.2^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{Z}_{\mathrm{tbjc}}=0.12^{\circ} \mathrm{C} / \mathrm{W}$（见图 3．11a）
结果： $\mathrm{P}_{\text {totavg }}=250 \mathrm{~W} ; \mathrm{P}_{\text {totmax }}=500 \mathrm{~W}$

$$
\mathrm{T}_{\text {javg }}=80^{\circ} \mathrm{C}+250 \mathrm{~W} * 0.2^{\circ} \mathrm{C} / \mathrm{W}=\mathbf{1 3 0}^{\circ} \mathbf{C}
$$

$$
\mathrm{T}_{\mathrm{jmax}}=80^{\circ} \mathrm{C}+500 \mathrm{~W} * 0.12^{\circ} \mathrm{C} / \mathrm{W}=\mathbf{1 4 0}^{\circ} \mathbf{C}
$$

在例一中采用了 IGBT 常用的开关频率 10 kHz 。由于 IGBT在高频时的热抗较小，所以结温的平均值和最大值没有明显的不同。

在例二和例三中，开关频率降为 2 kHz ，但在例二中保持能耗不变，而在例三中则保持平均功耗和最大功耗不变。两个例子的计算结果显示出平均结温和最大结温有所不同。

可以简单地认为，当开关频率大于 3 kHz 时，采用平均功耗与静态热阻所做出的计算已经足够精确。

例四显示了在很低的开关频率下，平均结温和最大结温有着明显的差异。

3．2．2．4基波频率下的结温

器件的结温实际上是随着变流器输出电流的基波而变化的，但它的计算只有借助于计算机才能够有效地进行。

在计算中，先必须对每一个脉冲周期的电路和热路进行详细计算，然后才有可能对一个正弦半波进行积分，进而得到 IGBT和续流二极管的结温。

图3．12显示了在［194］中介绍过的此类计算方法的原理方框图。

