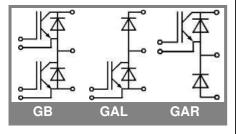
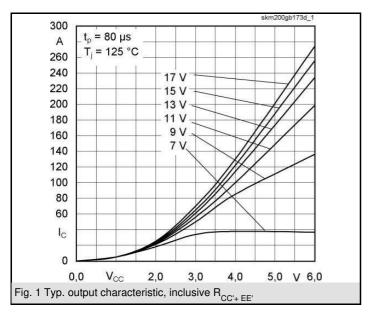


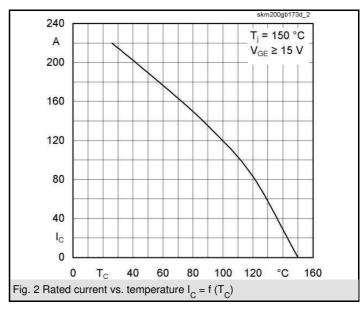
IGBT Modules

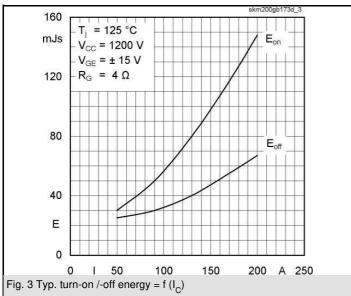

SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

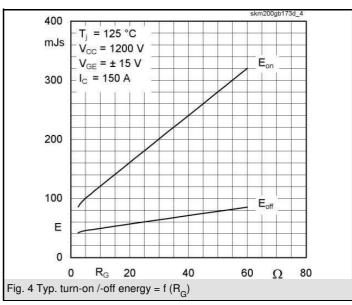
Features

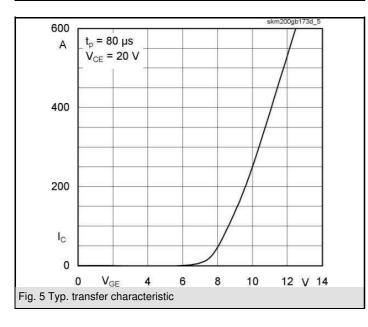
- MOS input (voltage controlled)
- N channel , Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

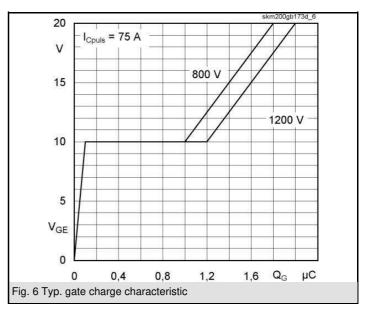

Typical Applications

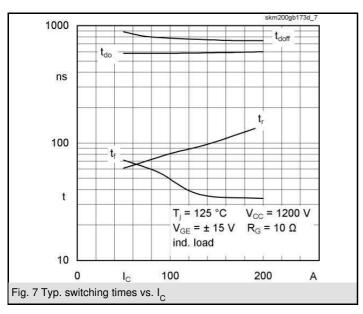

- AC inverter drives on mains 575 -750 V_{AC}
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

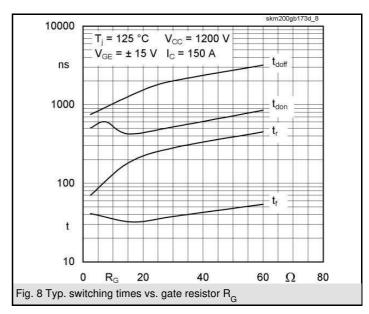


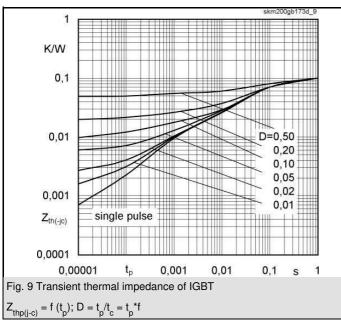

Absolute Maximum Ratings $T_c = 25 ^{\circ}\text{C}$, unless otherwise specified								
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1700	V					
I _C	$T_c = 25 (80) ^{\circ}C$	220 (150)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	300	Α					
V_{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	150 (100)	Α					
I _{FRM}	t _p = 1 ms	300	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	1450	Α					
Freewheeling diode								
I _F	$T_c = 25 (80) ^{\circ}C$	230 (150)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	400	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin; } T_j = 150 \text{ °C}$	2200	Α					

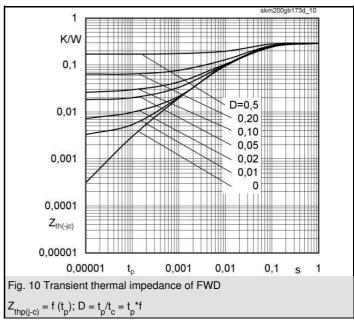

Characte	ristics	T _c = 25 °C	T _c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
$V_{GE(th)}$ I_{CES} $V_{CE(TO)}$ r_{CE}	$V_{GE} = V_{CE}$, $I_{C} = 10 \text{ mA}$ $V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_{j} = 25 (125) °C$ $T_{j} = 25 (125) °C$ $V_{GE} = 15 \text{ V}$, $T_{j} = 25 (125) °C$	4,8	5,5 0,1 1,65 (1,9) 11,7 (17,3)	6,2 0,3 1,9 (2,15) 13,3 (19)	V mA V mΩ		
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V, chip level		3,4 (4,5)	3,9 (5)	V		
C _{ies} C _{oes} C _{res} L _{CE} R _{CC'+EE'}	under following conditions V_{GE} = 0, V_{CE} = 25 V, f = 1 MHz res., terminal-chip T_c = 25 (125) °C		20 2 0,55 0,35 (0,5)	20	nF nF nF nH mΩ		
$\begin{aligned} & t_{d(on)} \\ & t_r \\ & t_{d(off)} \\ & t_f \\ & E_{on} \left(E_{off} \right) \end{aligned}$	$V_{CC} = 1200 \text{ V}, I_{Cnom} = 150 \text{ A}$ $R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 \text{ °C}$ $V_{GE} = \pm 15 \text{ V}$		580 100 750 40 95 (45)		ns ns ns ns mJ		
Inverse diode							
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V; T_j = 25 (125)		2,2 (1,9)	2,7	V		
$V_{(TO)}$ r_{T} I_{RRM} Q_{rr} E_{rr}	T_j = 125 () °C T_j = 125 () °C I_{Fnom} = 150 A; T_j = 25 (125) °C di/dt = 1000 A/ μ s V_{GE} = 0 V		1,3 4,5 60 (85) 15 (38)	1,5 6,2	V mΩ A μC mJ		
FWD							
$\begin{aligned} & V_{F} = V_{EC} \\ & V_{(TO)} \\ & \Gamma_{T} \\ & I_{RRM} \\ & Q_{rr} \\ & E_{rr} \end{aligned}$	$\begin{aligned} & I_F = 150 \text{ A; } V_{GE} = 0 \text{ V, } T_j = 25 \text{ (125) °C} \\ & T_j = 125 \text{ () °C} \\ & T_j = 125 \text{ () °C} \\ & I_F = 150 \text{ A; } T_j = 25 \text{ (125) °C} \\ & \text{di/dt} = \text{A/}\mu\text{s} \\ & V_{GE} = \text{V} \end{aligned}$		2 (1,8) 1,3 3,5 75 (110) 20 (50)	2,4 1,5 4,5	V V mΩ A μC mJ		
	characteristics	ī					
$\begin{aligned} R_{th(j\text{-}c)} \\ R_{th(j\text{-}c)D} \\ R_{th(j\text{-}c)FD} \\ R_{th(c\text{-}s)} \end{aligned}$	per IGBT per Inverse Diode per FWD per module			0,1 0,32 0,21 0,038	K/W K/W K/W		
Mechanical data							
M _s M _t	to heatsink M6 to terminals M6	3		5	Nm Nm		
w				325	g		

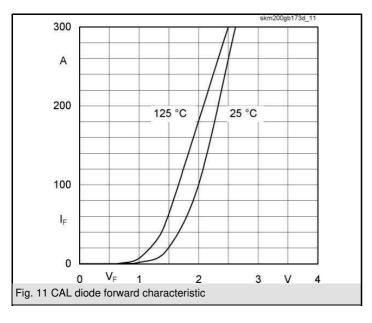


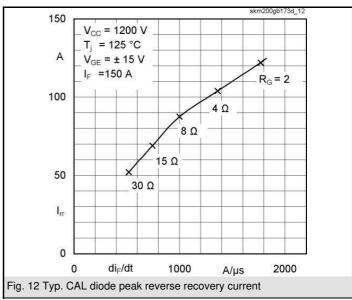




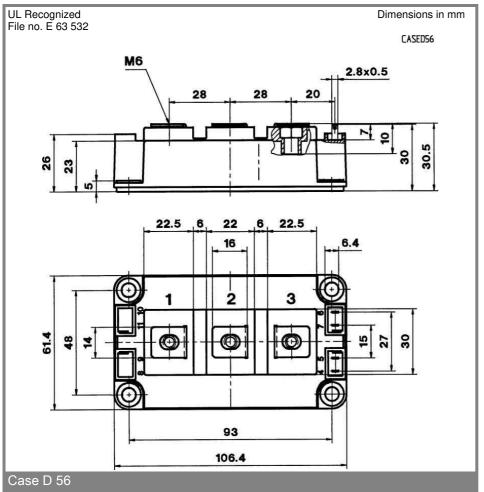


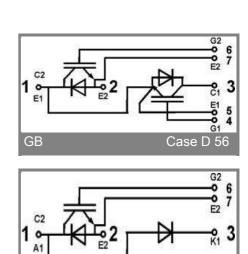


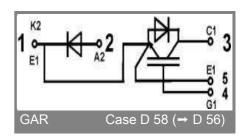












Case D 57 (→ D 56)

GAI

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.